No Finite Invariant Density for Misiurewicz Exponential Maps

نویسنده

  • JANINA KOTUS
چکیده

For exponential mappings such that the orbit of the only singular value 0 is bounded, it is shown that no integrable density invariant under the dynamics exists on C.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence and Convergence Properties of Physical Measures for Certain Dynamical Systems with Holes

We study two classes of dynamical systems with holes: expanding maps of the interval and Misiurewicz maps. In both cases, we prove that there is a natural absolutely continuous conditionally invariant measure μ (a.c.c.i.m.) with the physical property that strictly positive Hölder continuous functions converge to the density of μ under the renormalized dynamics of the system. In addition, we con...

متن کامل

Triviality of fibers for Misiurewicz parameters in the exponential family

We consider the family of holomorphic maps ez + c and show that fibers of postsingularly finite parameters are trivial. This can be considered as the first and simplest class of non-escaping parameters for which we can obtain results about triviality of fibers in the exponential family.

متن کامل

Ergodic properties of countable extensions

Roth, Samuel Joshua PhD, Purdue University, May 2015. Ergodic Properties of Countable Extensions. Major Professor: Micha l Misiurewicz. First, we study countably piecewise continuous, piecewise monotone interval maps. We establish a necessary and sufficient criterion for the existence of a non-decreasing semiconjugacy to an interval map of constant slope in terms of the existence of an eigenvec...

متن کامل

Rational Misiurewicz Maps Are Rare Ii

The notion of Misiurewicz maps has its origin from the paper [10] from 1981 by M. Misiurewicz. The (real) maps studied in this paper have, among other things, no sinks and the omega limit set ω(c) of every critical point c does not contain any critical point. In particular, in the quadratic family fa(x) = 1 − ax 2, where a ∈ (0, 2), a Misiurewicz map is a non-hyperbolic map where the critical p...

متن کامل

Rational Misiurewicz Maps for Which the Julia Set Is Not the Whole Sphere

We show that Misiurewicz maps for which the Julia set is not the whole sphere are Lebesgue density points of hyperbolic maps.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008